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ABSTRACT

Identification of independent physical/dynamical modes and corresponding principal component time series
is an important aspect of climate studies for they serve as a tool for detecting and predicting climate changes.
While there are a number of different eigen techniques their performance for identifying independent modes
varies. Considered here are comparison tests of eight eigen techniques in identifying independent patterns from
a dataset. A particular emphasis is given to cyclostationary processes such as deforming and moving patterns
with cyclic statistics. Such processes are fairly common in climatology and geophysics. Two eigen techniques
that are based on the cyclostationarity assumption—cyclostationary empirical orthogonal functions (EOFs) and
periodically extended EOFs—perform better in identifying moving and deforming patterns than techniques based
on the stationarity assumption. Application to a tropical Pacific surface temperature field indicates that the first
dominant pattern and the corresponding principal component (PC) time series are consistent among different
techniques. The second mode and the PC time series, however, are not very consistent from one another with
hints of significant modal mixing and splitting in some of derived patterns. There also is a detailed difference
of intraannual scale between PC time series of a stationary technique and those of a cyclostationary one. This
may bear an important implication on the predictability of El Niño. Clearly there is a choice of eigen technique
for improved predictability.

1. Introduction

A primary goal of empirical orthogonal function
(EOF) analysis is to identify and extract from a dataset
physically and dynamically independent patterns also
called normal modes (Schnur et al. 1993; Dunkerton
1993; Braconnot and Frankignoul 1993; Zwiers 1993;
Xu 1993; Montroy 1997; to name only a few studies).
These independent ‘‘modes’’ provide important clues as
to the physics and dynamics of the system to be studied.
Another important but poorly recognized goal of EOF
analysis is to represent natural variability, or background
fluctuations, in terms of a set of orthogonal functions.
Such is called a basis set. In meteorology, North and
Cahalan (1981) were probably the first to recognize this
and used the EOF expansion of spatial covariance func-
tions in a study of sampling errors.

One essential application of EOFs in climate studies
is in the areas of prediction, estimation, and detection
of climatic changes. They are collectively called the
linear estimation study. A statistical prediction exercise
typically consists of identifying physical and/or dynam-
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ical modes and evaluating their future values. Since the
success of prediction, in a large part, depends on the
faithful extraction of meaningful modes, often elaborate
EOF techniques are employed in such studies (e.g., Gra-
ham et al. 1987a,b; Xu and von Storch 1990; Blumenthal
1991).

In a detection study, background noise is decomposed
into EOFs, which serve as a set of orthogonal basis
functions. Then a signal, decomposed into the same
EOFs, is compared with the noise mode by mode.
Modes with higher signal-to-noise ratio certainly are
more beneficial and are weighted accordingly for the
signal detection (Hasselmann 1993; Santer et al. 1994;
North et al. 1995; North and Kim 1995; Hegerl et al.
1996). This EOF representation of background noise,
or natural variability, is extremely useful. EOFs are con-
structed such that they are independent, at least com-
putationally, of each other. Thus, each principal com-
ponent (PC) time series represents an independent ran-
dom variable and the use of joint probability distribution
function can be avoided in a statistical test. This EOF
representation was proven to be useful also in many
estimation studies (Shen et al. 1994; Kim et al. 1996b;
Kim 1997).

It is rather obvious that accuracy of EOFs and ei-
genvalues are important in linear estimation studies. An
immediate question, then, is which among a number of
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EOF techniques is best for a given dataset and purpose.
Such a question can only be answered case by case
because each technique has its own strength and weak-
ness. The property of each technique in comparison with
others has not yet been fully investigated through com-
parison studies and has only naively been perceived.
This study examines eight different EOF techniques via
a suite of experiments that are schematic but are easy
to understand. It should be pointed out that exhaustive
comparison tests are too big to be carried out here. One
important factor considered in this comparison study is
cyclostationarity.

There is an increasing tendency to take into account
the cyclostationarity of data in climate studies (Blu-
menthal 1991; Penland and Magorian 1993; von Storch
et al. 1995; Chen et al. 1995; Davey et al. 1996). See
Kim et al. (1996a) and Kim and North (1997) for the
definition of cyclostationary or periodically correlated
processes. Such a tendency is natural since many geo-
physical and climatic processes are approximately cy-
clostationary. Strong seasonality in the statistics of sur-
face temperature and surface precipitation, for instance,
is rather obvious. Some EOF techniques are tuned to
the analysis of stationary data while others are geared
more toward the cyclostationary analysis. Some tech-
niques inevitably introduce inaccuracies into the com-
putation of EOFs. Then, the question of aptitude and
accuracy of a certain technique emerges immediately.
Bear in mind that the tests here are limited in scope to
the analysis of data with periodic statistics.

Section 2 has a brief description of EOF techniques
employed in this study. Detailed description of the tech-
niques is repressed and is referred to more pertinent
publications. Description of three tests appears in sec-
tion 3 followed by the test results in the next section.
In section 5, a limited sensitivity test is conducted for
the cyclostationary EOF technique that yields the best
result in the previous section. Then, each technique is
compared to others as applied to tropical surface tem-
perature (ST) for major patterns of El Niño. Then, a
brief summary and concluding remarks follow.

2. Description of employed eigen techniques

Eight different eigen techniques have been employed
in this study. They are 1) regular EOF, 2) rotated EOF
(REOF), 3) complex EOF (CEOF), 4) extended EOF
(EXEOF), 5) periodically extended EOF (PXEOF), 6)
principal oscillation pattern (POP), 7) cyclostationay
POP (CSPOP), and 8) cyclostationary EOF (CSEOF)
techniques. A common aspect of these techniques is that
they find eigenfunctions and eigenvalues of a matrix.
In most techniques, this matrix is referred to as a co-
variance matrix, {Cij}, where i and j are data points. A
covariance matrix is derived from the spatial covariance
function of a given dataset or its variant. In the POP
and CSPOP techniques, it is called the system matrix.
It is derived from lagged spatial covariance functions.

How such a matrix, either covariance matrix or system
matrix, is derived from a dataset deviates from one
method to another and it entails the difference between
different techniques.

In a regular EOF analysis, a covariance matrix is
simply the spatial covariance function of data at the
specified grid points:

Cij 5 ^TiTj&, (1)

where Ti 5 T(r̂ i, t) is the value of data at a point r̂i and
^ · & implies ensemble averaging. This analysis may be
useful in identifying stationary patterns.

A rotated EOF analysis employed in this study is
based on the varimax rotation (Richman 1986; Barnston
and Livezey 1987; Cheng et al. 1995; Montroy 1997).
In essence, EOF patterns, p̂k(r̂), k 5 1, · · · , K, are
rotated such that the so-called ‘‘simplicity’’ functional
S is minimized as a result of rotation:

K

S (q̂ , q̂ , · · · , q̂ ) 5 f (q̂ ), (2)O1 2 K k
k51

where
2 22 2m m1 q̂(r̂ ) 1 q̂(r̂ )i if (q̂) 5 2 . (3)O O21 2 1 2[ ] [ ]m s m si51 i51i i

Here, q̂k(r̂), k 5 1, · · · , K, are rotated EOFs and si is
the standard deviation at point r̂i. The varimax rotation
is an orthogonal transformation and yields a set of or-
thogonal eigenfunctions. The technique is known to
yield more stable spatial patterns in general (Richman
1986; Montroy 1997).

In a complex EOF analysis (Wallace and Dickinson
1972; Horel 1984; Barnett 1983, 1985) real dataset is
extended into a complex variable the imaginary part of
which is Hilbert transform of the real part:

T̃(r̂, t) 5 T(r̂, t) 1 H(T(r̂, t)), (4)

where
22pivtH(T(r̂, t)) 5 c (r̂, v)e (5)O H

v

and

ic(r̂, v) for v $ 0
c (r̂, v) 5 (6)H 52ic(r̂, v) for v , 0.

The c(r̂, v) are the expansion coefficients of T(r̂, t);
that is,

22pivtT(r̂, t) 5 c(r̂, v)e , (7)O
v

where v is the natural frequency. A covariance matrix
is obtained from a complex variable (4). Since the imag-
inary part (Hilbert transform) represents the phase shift
by a quater of a period, complex EOFs may be suited
for identifying moving patterns.

The extended EOF analysis (Weare and Nasstrom
1982) is mathematically equivalent to the multichannel
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singular spectral analysis (Plaut and Vautard 1994). In
both techniques, a covariance matrix is augmented by
time-lagged covariance functions. That is,

C(0) C(1) C(l ) 

C(1) C(0) C(l 2 1)
C 5 , (8) 5 

C(l ) C(l 2 1) C(0) 

where the lag-l spatial covariance matrix is

C(l) 5 ^T(r̂, t)T(r̂9, t 1 l)&. (9)

Here r̂ and r̂9 represent two different locations and the
elements of C(l) are defined as in (1). The resulting
covariance matrix is equivalent to considering a new
variable,

T̃(r̂, t) 5 {T(r̂, t), T(r̂, t 1 1), · · · , T(r̂, t 1 l )},

(10)

which consists of time-lagged data. This technique is
intended for space–time (moving) patterns of data by
taking both the spatial and temporal correlations into
account (Lau and Chan 1985; Graham et al. 1987a,b).

A variant of the extended EOF technique is the fol-
lowing:

C C C 1,1 1,2 1,l

C C C 2,1 2,2 2,lC 5 , (11) 5 
C C C l,1 l,2 l,l

where

C 5 ^T(r̂, j 1 lt)T(r̂9, k 1 lt)&,jk

j, k 5 1, · · · , l; (12)

the ensemble being taken for t and l is the period. Let
us call it a periodically extended EOF technique. The
covariance matrix (11) is derived by dividing data into
l periodic segments and treating them as different vari-
ables; that is,

T̃(r̂, t) 5 {T(r̂, 1 1 lt), T(r̂, 2 1 lt), · · · , T(r̂, l 1 lt)}.

(13)

The technique is a sensible generalization for a variable
with periodic statistics and it will be useful for identi-
fying any periodic patterns.

POP and CSPOP analyses are somewhat different
from other EOF techniques and are oriented more to-
ward the modeling of dynamical systems. Since the
technique was first introduced by Hasselmann (1988),
POP analysis have frequently been used in climate stud-
ies (e.g., Latif and Flügel 1991; Latif et al. 1993; Bürger
1993; Barnett et al. 1993). The POP technique identifies
essentially a multivariate autoregressive (AR) model:

T(r̂, t 1 1) 5 AT(r̂, t) 1 e(r̂, t), (14)

where the system matrix A is

A 5 C(1)C(0)21 (15)

and C(0) and C(1) covariance matrices at lag 0 and 1,
respectively. Dominant spatial patterns, called POPs, are
obtained as eigenfunctions of the system matrix A. The
system matrix is not symmetric in general and complex
eigenvalues and conjugate pairs of complex eigenfunc-
tions should be expected. A complex eigenfunction may
represent an oscillating pattern.

CSPOP is a generalization of POP for cyclostation-
arity of data (Blumenthal 1991; von Storch et al. 1995).
A cyclostationary AR model may be written as

T(r̂, t, t 1 1) 5 A(t)T(r̂, t, t) 1 e(r̂, t, t), (16)

where t represents a cycle and t is nested time within
a cycle. Note that the system matrix depends upon the
nested time t and is assumed periodic; that is,

A(t 1 l) 5 A(t). (17)

Cyclostationary POPs are obtained as eigenfunctions of
the matrix

B(t) 5 A(t 1 l 2 1)A(t 1 l 2 2) · · · A(t). (18)

It can be proved that the eigenvalues of B(t) are in-
dependent of t . Eigenfunctions, however, are dependent
upon t .

As in CSPOP analysis, CSEOFs are also character-
ized by two temporal scales. This, of course, is in con-
sideration of the periodic statistics of cyclostationary
processes. There are two computational methods—one
based on Bloch’s theorem (Kim et al. 1996a) and the
other based on the assumption of harmonizable cyclos-
tationary processes (Kim and North 1997). The latter
method yields approximate CSEOFs but is much more
efficient computationally. The essence of the method is
to write a given data in the form

d21

2pikt/dT(r̂, t) 5 a (r̂, t)e , (19)O k
k50

where d is the nested period of a cyclostationary process.
We shall call ak(r̂, t) coefficient time series. A new
variable is constructed by juxtaposing coefficient time
series as

T̃(r̂, t) 5 {a1(r̂, t), a2(r̂, t), · · · , ad(r̂, t)}. (20)

Then, CSEOFs are obtained as eigenfunctions of the
covariance matrix of this new variable.

3. Test procedures

Described here are three different datasets that are
used to test these EOF techniques. The first dataset con-
sists of two stationary patterns of an anomaly with fixed
forms on top of a noise field (Fig. 1). Each mound is
forced by an autoregressive order-1 process (hereafter
AR-1) so that its strength changes in time. The dataset
consists of 21 3 15 arrays of length 564 points. The
two patterns are stationary in the sense that the applied
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FIG. 1. Two physical modes in the dataset of experiment 1. Each
pattern is fixed in shape but changes in amplitude in time scaled by
an AR-1 random forcing that is stationary. The percent variance ex-
plained by each mode (from left to right) is 14% and 86%, respec-
tively.

forcing time series are stationary and that its shape does
not change in time. Their percent variances are 14% and
86%, respectively. The variance of each mode represents
the variance of the driving force (i.e., PC time series)
after each pattern is normalized in magnitude. The sec-
ond dataset consists of two patterns of anomaly that are
changing in shape periodically with time on top of a
noise field (Fig. 2). The random forcings that drive these
mounds are stationary but the anomaly patterns are not
stationary because their shapes change in time. Their
percent variances are 7% and 93%, respectively. The
third dataset represents two moving patterns of anomaly
on top of a noise field (Fig. 3). The two patterns are
periodic and move at different speeds. The forcing time
series are stationary. Again, the anomaly patterns are
not stationary because their positions change in time.
Their percent variances are 14% and 86%, respectively.

The first dataset represents a stationary process in
space and time. Most EOF techniques are supposed to
isolate the independent patterns of this stationary da-
taset. This particular experiment, seemingly obvious,
was included to examine if EOF techniques designed
for cyclostationary analysis, such as CSPOP and
CSEOF, can handle this trivial case correctly.

The latter two datasets represent nonstationary pro-
cesses with the patterns and strength of anomalies
change periodically. For convenience let us assert that
the time step is one month and the periodicity is one
year. They are particular examples of cyclostationary
processes since the statistics of the datasets are approx-
imately cyclic both in space and time. A design concept
of these experiments was that often moving and de-
forming physical and dynamical patterns are of our in-
terest in geophysics and climatology. A typical example
is the ST patterns associated with El Niño. More general,
nonstationary datasets are beyond the scope of this study
and none of the EOF techniques addressed here qualifies
for them.

Finally, it is emphasized that the background noise
field is very weak in all the synthetic datasets (typically
leas than 1% of total variability). Also, the record is
reasonably long. Such a design consideration is to sep-
arate the issue of the accuracy of eigen techniques in
dealing with cyclostationary datasets from the issue of
sampling error. As will be evident in the test results

sampling error is almost completely suppressed. Also,
the anomalies are purposely detached from the boundary
of the domain so that the domain shape in conjunction
with the orthogonality requirement does not have any
impact on the topology of resulting patterns (Buell 1975,
1979; Richman 1986). Again, test results indicate that
the derived physical patterns are almost free of any im-
pact from the shape of the domain.

4. Test results

Discussed here are the test results of the experiments.
The results are in the form of pattern correlation and
temporal correlation of the derived EOF patterns and
the corresponding PC time series with those of the two
physical modes explained in the previous section. We
will use the term ‘‘physical’’ modes in contrast to ‘‘com-
putational’’ modes. There is no universally accepted cri-
terion for a good match but let us define it in terms of
correlation greater than 0.9 and modal mixing (corre-
lation of the second best match) less than 0.1 in both
time and space. In the case of complex EOF analysis,
pattern correlations were computed using both real and
imaginary patterns. Then, the larger of the two were
taken. POPs and cyclostationary POPs are also complex
patterns in general. In this study, all the meaningful
POPs and CSPOPs with maximum correlations with the
physical modes are real and therefore pose no compli-
cation in computing pattern correlations. Further,
monthly POP patterns are lagged such that the maximum
pattern correlation is achieved between physical modes
and POPs in the cyclostationary POP analysis. Then,
corresponding PC time series are computed.

a. Experiment 1

For a stationary anomaly field (Fig. 1) EOF, REOF,
EXEOF, PXEOF, and CSEOF techniques identify the
two modes in the dataset correctly. Both the pattern and
temporal correlations with the physical modes are high
for these techniques (Table 1). Surprisingly enough oth-
er techniques have a varying degree of difficulty in iden-
tifying these simple modes. One common problem clear-
ly discernable from the derived patterns in the latter
techniques is that the two modes are not well separated
(e.g., see Fig. 4).

The modal mixing in CEOFs can be explained in
terms of the cross-correlation between the PC time series
and their Hilbert transformations. Note that the PC time
series are uncorrelated with each other and so are their
Hilbert transformations. Note also that regular EOF
analysis for the transformed dataset and the original
dataset results in identical patterns. While each Hilbert
transformation is uncorrelated with its original time se-
ries, the former is not uncorrelated with other PC time
series and vice versa. This causes cross-covariance be-
tween the original PC time series and their Hilbert trans-
formations and modal mixing as a result. This simple
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FIG. 2. Two physical modes in the dataset of experiment 2. Each pattern changes in shape periodically in time. The amplitude of each
pattern also changes in time scaled by a random noise that is stationary. The percent variance explained by each mode (from left to right)
is 7% and 93%, respectively.

test indicates that modal mixing is inevitable in CEOF
analysis unless each mode is first separated somehow
prior to the analysis. If two modes have very different
frequencies they can be separated by simple filtering,
which is frequently done in practice.

While POP and CSPOP techniques in essence find a
multivariate, AR-1 model that best fits a given dataset
[see (14) and (16)], there is no a priori justification that
such a model is most suitable for identifying patterns

in the dataset. This statement does not imply that the
methodologies are not useful. There certainly are ample
examples that prove the utility of the techniques. Note
that this AR-1 representation naturally comes from the
discretization of a first-order Markov process. The pres-
ent dataset simply does not conform to the first-order
Markov process. It is emphasized that fitting a pre-
scribed model to a dataset can result in spurious modes
or modal mixing.
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FIG. 3. Two physical modes in the dataset of experiment 3. Each pattern moves periodically in time. The amplitude of each mound changes
in time scaled by a random forcing that is stationary. The percent variance explained by each mode (from left to right) is 14% and 86%,
respectively.

In the PXEOF technique, given data are periodically
divided into a number of segments each of which is a
new variable [see (13)]. If the given data are truly sta-
tionary, the statistics of these new variables should be
identical. Then, the resulting covariance matrix in (11)
should be periodic and each block denoted as Cjk should
be identical. Thus, the PXEOFs should be identical for
each time section. Such is the case for the present ex-
ercise.

b. Experiment 2
When the physical modes change in shape with time

(Fig. 2), all of the eigen techniques except for PXEOF
and CSEOF exhibit some difficulty in indentifying cor-
rect evolving patterns. One common problem is the mix-
ing of modes. Derived patterns of CEOF, POP, and
CSPOP clearly show signs of modal mixing (see also
pattern and temporal correlations in Table 2). The mech-
anism of mixing is similar to the previous experiment.
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TABLE 1. Spatial and temporal correlations of the derived EOF
patterns and the corresponding principal component time series with
those of the two physical modes (modes 1 and 2) from experiment
1. Each block consists of two lines of entries: best pattern correlation
and cross correlation with mode numbers in parenthesis (first line),
and best temporal correlation and cross correlation (second line). The
acronyms stand for EOF for regular empirical orthogonal function,
REOF for rotated EOF, CEOF for complex EOF, EXEOF for extended
EOF, PXEOF for periodically extended EOF, POP for principal os-
cillation pattern, CSPOP for cyclostationary POP, and CSEOF for
cyclostationary EOF.

Method
Mode 1

(s 2 5 1200)
Mode 2

(s 2 5 181)

EOF 1.00 (1)
1.00

0.01 (2)
0.01

1.00 (2)
1.00

0.00 (1)
0.01

REOF 1.00 (1)
1.00

0.01 (2)
0.02

1.00 (2)
1.00

0.01 (1)
0.03

CEOF 1.00 (1)
1.00

0.02 (2)
0.01

1.00 (2)
0.86

0.01 (1)
0.01

EXEOF 1.00 (1)
0.95

0.00 (2)
0.05

1.00 (2)
0.94

0.01 (1)
0.04

PXEOF 1.00 (1)
1.00

0.01 (2)
0.01

0.99 (2)
1.00

0.00 (1)
0.00

POP 1.00 (1)
1.00

0.75 (2)
0.95

0.65 (2)
0.32

0.10 (1)
0.03

CSPOP 0.98 (1)
1.00

0.15 (3)
0.19

0.31 (3)
0.13

0.20 (1)
0.07

CSEOF 1.00 (1)
0.99

0.01 (2)
0.00

1.00 (2)
0.99

0.00 (1)
0.00

FIG. 4. Two POP patterns with maximum correlations with the
physical modes (experiment 1). The two physical modes were not
satisfactorily separated. The dashed lines represent negative contours.

TABLE 2. Spatial and temporal correlations of the derived EOF
patterns and the corresponding principal component time series with
those of the two physical modes (modes 1 and 2) from experiment
2. The table entries and the acronyms are the same as in Table 1.

Method
Mode 1

(s 2 5 294)
Mode 2

(s 2 5 21)

EOF 0.89 (1)
0.78

0.02 (3)
0.04

0.99 (3)
0.99

0.03 (1)
0.01

REOF 0.67 (2)
1.00

0.02 (3)
0.03

1.00 (3)
0.99

0.01 (2)
0.04

CEOF 0.89 (1)
0.78

0.09 (3)
0.08

0.97 (3)
0.71

0.03 (1)
0.01

EXEOF 0.93 (1)
0.95

0.00 (4)
0.05

0.99 (2)
0.94

0.02 (1)
0.01

PXEOF 1.00 (1)
1.00

0.01 (2)
0.09

0.99 (2)
0.99

0.01 (1)
0.05

POP 0.93 (1)
0.83

0.00 (7)
0.03

0.69 (7)
0.85

0.07 (1)
0.01

CSPOP 0.71 (3)
0.63

0.33 (2)
0.47

0.79 (2)
0.26

0.05 (3)
0.02

CSEOF 1.00 (1)
1.00

0.01 (2)
0.01

0.99 (2)
1.00

0.01 (1)
0.04

Another common problem is the splitting of modes.
Eigen techniques based on the stationarity assumption
are not able to pick up evolving patterns. The only al-
ternative is to split the evolving patterns into a series
of orthogonal patterns that do not change in time. For
example, modes 2 and 4 of Fig. 5 are a stationary rep-
resentation of the evolving physical mode. This modal
splitting is a typical problem for all eigen techniques
based on the stationarity assumption including the
REOF technique. It is rather obvious that actual modes
in Fig. 2 cannot be obtained by rotating EOF patterns
shown in Fig. 5.

This also implies that each EOF pattern does not have
an accurate temporal structure. As a consequence PC
time series may be erroneous. For example, the first two
EXEOF patterns that have maximum resemblance with
the physical modes do not change during the stipulated
cycle (12 months) in contrast to the actual modes in
Fig. 2. Inaccurate temporal structure of a spatial pattern
should be reflected in the corresponding PC time series.

Both the CSEOF and PXEOF techniques do a fairly
good job in reproducing the evolving patterns. Both the
pattern and temporal correlations are good (Table 2). It
is of no coincidence that CSEOFs look very similar to
the actual modes. This technique is designed for cy-
clostationary processes. In the PXEOF technique, given
data are periodically divided into a number of segments
each of which is a new variable [see (13)]. For instance,

each month is considered a different variable in a month-
ly observational data. This idea seems useful for ana-
lyzing cyclostationary datasets. Indeed, the evolution of
the EOF patterns is similar to those of Fig. 2 (see also
Table 2).

c. Experiment 3

The third experiment is for moving anomaly patterns
shown in Fig. 3. All the techniques except for PXEOF
and CSEOF suffer from inaccuracies. Pattern correla-
tions are generally poorer than in experiment 2 as a
result of moving patterns. Both the CSEOF and PXEOF
techniques do a fairly good job in reproducing the mov-
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FIG. 5. Four EOF patterns (experiment 2). The second and fourth modes represent the variance splitting of the time evolving physical
mode.

TABLE 3. Spatial and temporal correlations of the derived EOF
patterns and the corresponding principal component time series with
those of the two physical modes (modes 1 and 2) from experiment
3. The table entries and the acronyms are the same as in Table 1.

Method
Mode 1

(s 2 5 1190)
Mode 2

(s 2 5 183)

EOF 0.83 (2)
0.96

0.01 (4)
0.06

0.83 (4)
0.98

0.07 (2)
0.00

REOF 0.72 (2)
0.92

0.04 (6)
0.09

0.58 (6)
0.72

0.00 (2)
0.03

CEOF 0.83 (2)
0.96

0.00 (4)
0.04

0.83 (4)
0.83

0.08 (2)
0.01

EXEOF 0.83 (1)
0.95

0.00 (6)
0.01

0.83 (6)
0.94

0.08 (1)
0.05

PXEOF 0.99 (1)
1.00

0.01 (2)
0.02

0.97 (2)
1.00

0.06 (1)
0.01

POP 0.83 (1)
0.98

0.56 (2)
0.89

0.58 (2)
0.38

0.14 (1)
0.03

CSPOP 0.27 (1)
0.32

0.01 (1)
0.00

CSEOF 0.99 (1)
1.00

0.01 (2)
0.02

0.97 (2)
1.00

0.08 (1)
0.01

ing patterns (figures not shown). Pattern and temporal
correlations for these techniques are good (Table 3).
Again, one of common problems is modal mixing,
which is apparent in many derived EOF patterns. Pat-
terns of CEOF, POP, and CSPOP clearly show signs of
modal mixing (see also Table 3).

Another common problem is mode splitting. Evolving
patterns are split into a series of stationary patterns. This
splitting is well demonstrated in the eigenvalues. More
than two modes have significant variance (.10%) in all
the eigen techniques based on the stationarity assump-
tion. A stationary representation of moving patterns ap-
pears in the form of dipoles and elongated modes in the
direction of motion (Fig. 6). The rotation of the EOFs
indeed simplifies the patterns and the rotated EOFs do

not have notable dipole and elongated structures (Fig.
7). The REOF technique, on the other hand, divides a
moving pattern into a series of stationary patterns, which
obviously is a stationary representation of moving pat-
terns.

5. Sensitivity of cyclostationary EOFs

As shown in the previous section the CSEOF tech-
nique performs best in identifying moving and deform-
ing patterns with cyclic statistics. It is, then, legitimate
to ask how sensitive CSEOFs and the associated PC
time series are. Considered here is a Monte Carlo test
of the sensitivity of CSEOFs to the length of records
and the background noise level. Note that background
noise implies uninteresting fluctuations of little or no
physical origin. Also record length is an important
source of sampling error.

For the test datasets of deforming and moving patterns
similar to those in the experiments 2 and 3 above were
created. Each dataset is 21 3 15 in lateral extent and
is 600 points long in time. The test employs seven dif-
ferent levels of background noise. The standard devi-
ations of the employed background noise at each grid
point are 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0, respec-
tively. Background noise at each station is assumed to
be random with a Gaussian distribution with zero mean
and a prescribed standard deviation. It is cautioned that
such an assumption is introduced merely to simplify the
experiment but may not be accurate. For each level of
background noise 10 different realizations were gen-
erated using a random number generator. Then, CSEOFs
were extracted from each realization employing five dif-
ferent sampling lengths: 10, 20, 30, 40, and 50 yr, re-
spectively. The sensitivity is measured in terms of the
magnitude of the eigenvalues, the PC time series cor-
relations, and the pattern correlations of the first two
modes with those of an error-free dataset. The standard
deviations of these quantities were also computed from
10 realizations.
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FIG. 6. Four EOF patterns (experiment 3). The first and third modes have dipole structures. The second and fourth modes are elongated
compared with the exact physical modes. Derived patterns often have such structures when physical modes are moving.

FIG. 7. Four REOF patterns (experiment 3). The EOF modes in Fig. 6 have been simplified by varimax rotation. Much of the dipole and
elongated structures of EOFs have been removed but the resulting REOF modes are still much different from the exact physical modes.

Figure 8 shows the first two eigenvalues and the sum
of them for the first datasets with deforming patterns.
The exact eigenvalues are 1.02 and 0.806 for the two
modes, respectively. The eigenvalues were reproduced
reasonably until the background noise level reaches 0.2
(about 20% of the first exact eigenvalue). Beyond this
level of background noise eigenvalues were seriously
overestimated. For example, errors are 25% and 31%
for the first two eigenvalues for panel (e) in Fig. 8.
Estimates of eigenvalues also deteriorate as sampling
length decreases as should be expected. For example,
at the background noise level of 0.2 [panel (d)] the
standard deviation of estimation increases from 0% to
50% and 61% for the first two eigenvalues, respectively,
when the sampling length decreases from 50 to 10 years.

Figure 9 shows the cross-pattern correlations between
the two exact modes and two estimates. As expected,
extracted patterns become progressively dissimilar from
the exact modes as background noise increases and the
record length decreases. For panel (e), pattern correla-
tions are 0.90 and 0.88 for the first two modes, respec-

tively, when the estimation is based on 50-yr record.
For a 10-yr record, the respective pattern correlations
are 0.56 6 0.10 and and 0.43 6 0.13. Note also that
cross-pattern correlations are rather sensitive to the rec-
ord length. Even for small background noise cross-pat-
tern correlations are significant, reaching 0.53 and 0.54
for a 10-yr record [panel (a)]. This nonzero cross cor-
relation indicates modal mixing. The degree of modal
mixing depends crucially on the ratio of sampling error
(in terms of the magnitude and the record length) to the
separation of two eigenvalues (North 1984). Cross pat-
tern correlations are reasonable if the level of back-
ground noise does not exceed 50% of modal variances
(eigenvalues) for a sufficiently long record.

Cross-temporal correlations show similar trends to
those of the pattern correlations (see Fig. 10). As in the
case of the pattern correlations similarity between the
exact PC time series and their estimates quickly dete-
riorates as the record length decreases. For instance,
temporal correlations decrease from 1.00 to 0.77 and
0.53, respectively, for the two modes and cross-corre-
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FIG. 8. Ensemble mean and standard deviation of the first eigenvalue (left), the second eigenvalue (middle), and the sum of the two (right) of
the first dataset. Standard deviation of sampling error at each grid point is (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5, and (f) 1.0, respectively.

lations increase from 0.05 to 0.53 and 0.51 when the
level of background noise is 0.5 [panel (e)]. Even for
negligible background noise temporal correlations sig-
nificantly deteriorate for a short record. For example,
correlations are 0.87 and 0.81 and cross correlations are
0.58 and 0.50 for a 10-yr record [panel (a)]. For a suf-
ficiently long record the agreement between the exact
PC time series and the estimates is reasonable as long
as the level of background noise does not exceed 50%
of modal variances.

For the second datasets with moving patterns general
sensitivity trends are similar to those of the first datasets
with greater error with increased background noise and
decreased record length. There is one significant dif-
ference between the two, which is worthy of note. Gen-
erally, moving patterns are much less sensitive than de-
forming patterns to the magnitude of background noise
and the record length. This is because of the dissimilar
nature of signals and noise. Namely, there is little chance
that background noise that is stationary (at least in this
experiment) is mistaken for moving signals. Therefore,
comparisons of eigenvalues and pattern and temporal
correlations between the exact modes and the extracted
patterns are more favorable for the second dataset than
for the first dataset with tighter standard deviations (fig-
ures not shown).

6. Application to El Niño

EOF techniques are frequently used to derive domi-
nant patterns of ST anomalies associated with El Niño,
which together with corresponding PC time series are
an important piece of information for El Niño predic-
tion. Figure 11 shows the first two dominant EOF pat-
terns from a tropical Pacific monthly ST dataset (1950–
1996) derived from the Comprehensive Ocean–Atmo-
sphere Data Set (Woodruff et al. 1987). The dataset is
in 28 3 28 and represents the sea surface temperature
over the ocean and the surface atmospheric temperature
over land. They are also reproduced similarly from sim-
ulated ST anomalies. Here, a test was carried out to
examine how consistent these El Niño patterns are
among different eigen techniques. Analysis of ST vari-
ance by month also indicates that there is a notable
annual cycle in the ST variability (von Storch et al.
1995). Thus, it would be interesting to see if eigen tech-
niques based on the cyclostationarity assumption alter
the dominant El Niño patterns in any significant way.

Tables 4 and 5 show cross correlations of the first
two dominant ST anomaly patterns. The first pattern is
reproduced rather consistently by all of the eigen tech-
niques employed here except for the REOF technique.
Pattern correlations are high but modal mixing and split-
ting are also obvious in the nonnegligible second-best



JANUARY 1999 195K I M A N D W U

FIG. 9. Mean and standard deviation of the cross pattern correlations between the exact modes and contaminated modes of the first dataset.
The correlations are between the first exact mode and the first EOF (first column), first exact mode and second EOF (second column), second
exact mode and first EOF (third column), and second exact mode and second EOF (fourth column). Standard deviation of sampling error
at each grid point is (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5, (f ) 1.0, and (g) 2.0, respectively.

correlations. The POP and CSPOP methods identify sev-
eral modes that are similar to the first EOF pattern.

The first REOF is somewhat different from the rest
of the derived patterns. It is impossible to exclude the
possibility that the REOF is most accurate. It was found
from previous experiments, however, that the rotation
of EOFs does not necessarily lead to more accurate
patterns, particularly for nonstationary patterns. While
previous studies report greater stability and physical re-
alism of rotated patterns, this study reports the extreme
sensitivity of the REOF technique. Rotated patterns
were very sensitive to the number of EOF patterns re-
tained for rotation, normalization of the EOF patterns,
and the domain size.

The second pattern is not consistent among different
techniques. It is rather difficult to say which one is most
accurate. According to the pattern correlations, however,
EOF, REOF, CEOF, EXEOF, and CSEOF produce pat-
terns that are similar (correlation .0.8) to each other.
Except for the CSEOF pattern, second-best correlation
is also high for these techniques thereby indicating sig-
nificant modal mixing and splitting.

Temporal correlations show similar patterns (table not
shown). The PC time series of the first mode are gen-
erally highly correlated with each other. Again, modal
mixing and splitting is obvious for EXEOF, PXEOF,

POP, and CSPOP. The PC time series of the second mode
are generally not consistent with each other. The tem-
poral correlations are less than 0.8 except between the
EOF and CSEOF techniques. Even with high temporal
correlation PC time series from the latter two techniques
are different in detail. The PC time series derived from
a stationary technique is typically more wiggly than that
from a cyclostationary counterpart (Fig. 12). This is
because a former technique cannot resolve temporal
variations of eigenfunctions. This may bear an important
implication on the prediction of El Niño using patterns
derived from eigen techniques.

Despite the encouraging results in earlier experi-
ments, the performance of the PXEOF technique is poor
for the actual dataset. This may be because of significant
sampling error associated with the short record length.
The actual dataset is more variable with more noise than
those in the synthetic experiments earlier, and accurate
statistics could not be obtained from a relatively short
record. Typically, the situation is less favorable for the
PXEOF technique because the length of each segment
in (13) is only a fraction of the total record length, and
is therefore more susceptible to sampling error.

Finally, it should be examined if the poor consistency
in Tables 5 and 6 represents essential discordance of
different eigen techniques or simply sampling errors or
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FIG. 10. Mean and standard deviation of the cross correlations between the PC time series of exact modes and those of contaminated
modes of the first dataset. The correlations are between the first exact mode and the first EOF (first column), first exact mode and second
EOF (second column), second exact mode and first EOF (third column), and second exact mode and second EOF (fourth column). Standard
deviation of sampling error at each grid point is (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5, (f ) 1.0, and (g) 2.0, respectively.

FIG. 11. Two dominant patterns of tropical Pacific ST anomaly
field (1950–1996).

weakness of the modes compared with background
noise. Therefore, let us examine how sensitive CSEOFs
are to the record length. Table 6 shows pattern and tem-
poral correlations between the CSEOFs of the full da-
taset (1950–1996) and estimates based on differing
lengths of the dataset. Note that the first two modes are
well shielded from sampling noise as indicated by fairly

high correlations, even for a short record length (see
also Figs. 9 and 10). Also small cross-correlations imply
only a little mixing and indicates that the two eigen-
values are well separated compared with the noise level.

The concordance of the major patterns and the cor-
responding PC time series in Table 6 for a 40-yr record
with those of the full dataset is much better than the
consistency among different eigen techniques in Tables
4 and 5. Although a conclusive statement is difficut to
make from the limited experiment included here, it
seems like the discordance in Tables 4 and 5 is not
entirely due to sampling error or background noise but
rather reflects essential difference among different eigen
techniques.

7. Summary and concluding remarks

While EOF patterns and corresponding PC time series
constitute important information for climate studies,
they may vary depending upon the particular eigen tech-
nique employed. Considered in this study was a com-
parison of eight eigen techniques as to their ability to
reproduce physical/dynamical patterns faithfully from a
dataset. These eigen techniques were applied, in partic-
ular, to nonstationary datasets with periodic statistics.
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TABLE 4. Cross-correlations of the EOF patterns (dominant mode) derived from the tropical Pacific ST field (1950–96). The mode numbers
are in parenthesis with the suffix R for real and I for imaginary part of a complex pattern.

Method EOF REOF CEOF EXEOF PXEOF POP CSPOP CSEOF

EOF(1) 1.00 0.84 (1)
0.53 (2)

0.99 (1R)
0.16 (3R)

0.98 (1)
0.06 (2)

0.92 (1)
0.13 (2)

0.96 (4R)
0.93 (51)

0.93 (7I)
0.89 (6R)

0.94 (1)
0.10 (2)

REOF(1) 1.00 0.85 (1I)
0.46 (3I)

0.83 (1)
0.36 (4)

0.74 (1)
0.36 (4)

0.77 (4R)
0.69 (5I)

0.82 (6R)
0.75 (1R)

0.80 (1)
0.14 (2)

CEOF(1R) 1.00 0.96 (1)
0.13 (2)

0.91 (1)
0.17 (3)

0.95 (4R)
0.92 (5I)

0.94 (7I)
0.88 (6R)

0.92 (1)
0.18 (2)

EXEOF(1) 1.00 0.93 (1)
0.12 (2)

0.93 (4R)
0.91 (5I)

0.92 (7I)
0.90 (6R)

0.92 (1)
0.09 (2)

PXEOF(1) 1.00 0.87 (4R)
0.85 (5I)

0.87 (7I)
0.84 (6R)

0.96 (1)
0.06 (2)

POP(4R) 1.00 0.93 (7I)
0.83 (6R)

0.89 (1)
0.14 (2)

CSPOP(7I) 1.00 0.87 (1)
0.23 (2)

CSEOF(1) 1.00

TABLE 5. Cross correlations of the EOF patterns (second dominant mode) derived from the tropical Pacific ST field (1950–96). The mode
numbers are in parenthesis with the suffix R for real and I for imaginary part of a complex pattern.

Method EOF REOF CEOF EXEOF PXEOF POP CSPOP CSEOF

EOF(2) 1.00 0.94 (3)
0.23 (1)

0.82 (2R)
0.42 (4I)

0.83 (3)
0.45 (2)

0.62 (3)
0.50 (2)

0.56 (3I)
0.54 (2I)

0.59 (1I)
0.50 (2R)

0.80 (2)
0.08 (1)

REOF(3) 1.00 0.92 (2R)
0.38 (4I)

0.83 (3)
0.37 (2)

0.67 (3)
0.40 (2)

0.61 (3I)
0.60 (2I)

0.48 (1I)
0.44 (2R)

0.75 (2)
0.04 (1)

CEOF(2R) 1.00 0.75 (3)
0.25 (2)

0.62 (3)
0.34 (2)

0.63 (3I)
0.61 (2I)

0.49 (1I)
0.44 (2R)

0.62 (2)
0.14 (1)

EXEOF(3) 1.00 0.78 (3)
0.19 (2)

0.47 (2I)
0.46 (3I)

0.53 (1I)
0.46 (2R)

0.74 (2)
0.12 (1)

PXEOF(3) 1.00 0.44 (2I)
0.40 (3I)

0.40 (1R)
0.36 (5I)

0.73 (2)
0.04 (1)

POP(3I) 1.00 0.38 (1R)
0.29 (3R)

0.45 (2)
0.19 (1)

CSPOP(1I) 1.00 0.41 (1)
0.28 (2)

CSEOF(2) 1.00

These cyclostationary processes are fairly common in
climate studies and geophysics.

For a special case of stationary dataset, such eigen
techniques as CEOF, POP, and CSPOP that are designed
to find oscillatory behaviors in the data perform poorly.
Independent physical modes were not well separated
and resulted in a modal mixing. This, of course, does
not imply the inferiority of these techniques. There are
many examples demonstrating their utility.

For cyclostationary datasets with deforming or mov-
ing patterns, only CSEOF and PXEOF identify each
independent pattern without too much fault. Other tech-
niques suffer from varying degrees of modal mixing
and splitting. Modal mixing appears in the form of non-
negligible secondary correlations with modes other than

the matching one. Modal splitting occurs because eigen
techniques based on the stationarity assumption cannot
represent evolving patterns. As a result, evolving pat-
terns are split into a number of stationary patterns.

Test results consistently indicate that the CSEOF tech-
nique is useful and accurate for analyzing data with
cyclic statistics. The moving and deforming patterns
were well separated and faithfully reproduced. A test of
the sensitivity of CSEOFs to background noise level
and sampling error has been conducted, which should
serve as a crude but useful sampling theorem for
CSEOFs. The PXEOF technique may be an excellent
and inexpensive alternative for the CSEOF technique.
The PXEOF technique, however, seems to be sensitive
to sampling error arising from the limited length of a
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FIG. 12. Comparisons of the first two dominant PC time series of
tropical Pacific ST (1950–96) derived from the EOF and CSEOF
techniques: (a) first mode and (b) second mode. The CSEOF time
series were shifted upward for easy comparison. Because the sta-
tionary technique (EOF) does not resolve the temporal evolution of
physical modes, the corresponding PC time series are more errone-
ously estimated than the cyclostationary counterpart

TABLE 6. Spatial and temporal correlations of the first three dominant CSEOF patterns and the corresponding principal component time
series based on the full dataset with those of employing different lengths of data. The dataset is a monthly tropical Pacific surface temperature
anomaly field (1950–96). Each block consists of two lines of entries: best and second-best pattern correlations with mode numbers in
parenthesis (first line), and best and second-best temporal correlations (second line).

Case (yr) Mode 1 Mode 2 Mode 3

40 1.00 (1)
1.00 (1)

0.02 (7)
0.08 (7)

0.99 (2)
1.00 (2)

0.05 (7)
0.09 (4)

0.99 (3)
0.99 (3)

0.06 (5)
0.06 (5)

30 0.98 (1)
1.00 (1)

0.07 (5)
0.15 (5)

0.93 (2)
0.95 (2)

0.16 (3)
0.23 (5)

0.83 (3)
0.89 (3)

0.21 (2)
0.21 (10)

20 0.92 (1)
0.99 (1)

0.09 (5)
0.23 (3)

0.81 (2)
0.90 (2)

0.17 (5)
0.29 (5)

0.70 (3)
0.77 (3)

0.35 (4)
0.43 (4)

10 0.86 (1)
0.97 (1)

0.08 (4)
0.23 (4)

0.69 (2)
0.81 (2)

0.21 (3)
0.33 (3)

0.46 (4)
0.59 (4)

0.34 (3)
0.39 (3)

dataset. Thus, discretion should be exercised as to the
adequacy of this technique for each dataset.

Finally, eigen techniques were applied to the ST of
the tropical Pacific to identify patterns associated with
El Niño. The pattern correlations are high for the first
mode except for the REOF. The REOF mode is not very

consistent with the rest of the derived patterns. There
is some hint of modal mixing and splitting for the CEOF,
EXEOF, PXEOF, POP, and CSPOP techniques. The sec-
ond modes, however, are not very consistent among
different techniques. Only EOF, REOF, CEOF, EXEOF,
and CSEOF produce similar modes with high pattern
correlations (.0.8). Of these, only EOF and CSEOF
produce similar PC time series with correlation greater
than 0.8. This indicates that the seasonal cycle in the
statistics of the tropical Pacific ST is moderately small.
A limited sensitivity test seems to indicate that the dis-
cordance among eigen techniques mainly reflect mate-
rial difference among different eigen techniques, not just
sampling error or the weakness of the extracted modes.
Even with a relatively high correlation there is a detailed
difference between the two PC time series. Specifically,
eigen techniques based on the stationarity assumption
produce PC time series that are more wiggly than a
cyclostationary counterpart. This is due to their inability
to resolve the evolving patterns of a dataset. Thus, the
resolution of cyclic statistics may be an important con-
sideration and may improve the predictability of El
Niño.
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